After over two years of development, I’m very excited to announce the debut of the Mercury, a fully modular, open, universal camera system. For years I’ve been tinkering with cameras, machining custom parts, modifying existing designs, and generally experimenting with the technical possibilities of still photography. Eventually, a “maker quest” took shape, for purely personal reasons: the fabrication of the perfect camera. For me, at the time, that meant a relatively small, compact, hand-holdable camera capable of shooting a full 6x9cm frame on 120 film. That’s standard medium format film, which has a fixed height of 60mm but no fixed width: it is up to the camera and lens system to determine how much width to use for each frame. Most common today is 645, which uses only 45mm of film width, utilizing it as the vertical dimension of the frame. Older but stouter cameras, such as the venerable Hasselblad, Pentacon 6 (about which I’ve written extensively here) utilize a square 6×6 (cm) frame. Some professional cameras from the end of the 20th century shoot even larger frames, 6×7, but are themselves so enormous and heavy that they are often referred to as “boat anchors” by photographers. I wanted to do 6×9, a format popularized by Kodak in the 1920s (for which they invented 120 roll film). 6×9 “folders” were popular through the 1940s as amateur cameras, before being replaced by the new flood of 35mm film cameras once film stock became “good enough” to shoot on such a small negative. Folders were very limited, with only one lens and an often awkward mechanism by which they would fold out and lock together into their final form when you wanted to shoot—a delicate state not conducive to protection or focus accuracy. I love these cameras, but they would not satisfy me: I wanted my camera to be able to take nearly any lens, and to be rugged.
Professional cameras that could shoot 6×9 were made by Graflex in the USA, Linhof in Germany, and Horseman in Japan, but their heyday was in the 1960s, and they mostly faded away after that. And most of these cameras were fairly large and heavy, invariably made of metal, and contained a lot of options and controls that, for me, added too much bulk. Plus, most of these cameras were too thick to take ultra wide, non-retrofocal lenses. These special lenses, for the ultimate in wide angle photography, require an extremely thin camera; they are made for so-called “technical cameras” that generally cost multiple thousands of dollars. So I set out to make my own. I machined various parts from various cameras, but to make everything fit together, I ended up having to 3D print a number of components. When I was done, I ended up with an awesome prototype, and a revelation: I could create a version of this camera entirely from plastic components and it would be far more flexible, extensible, and lighter, as well as sharable by a community of users. So I set out to make a fully modular, open camera system based upon standard components that anyone could modify, replace, and upgrade for new functionality.
Slowly, a system began to come together that was, I hoped, truly revolutionary. On one hand it was a camera that could do anything, theoretically: any module could be modified or replaced to allow compatibility with some past or future part that already existed (19th century lenses, 21st century digital backs, new and old instant film formats, Hasselblad film backs, etc.). This was truly a rhizomatic camera: it could connect anything to anything else. But it was, I felt, more than that: it was also a form of hardware development that was fundamentally anti-corporate. It was meant to follow an open source software model of open community development coupled with new distributed manufacturing techniques such as 3D printing and low-volume injection molding with innovative materials, and the collective potential of crowdfunding (Kickstarter, Indiegogo, etc.) and social media. This would be hardware development for the 21st century: distributed but centrally organized, driven by the very dynamics that make a community vibrant, without profit motive or exclusionary intellectual property (the double helix of contemporary capitalism). In short, the Mercury was a unique photographic tool, a platform for hardware development and creative experimentation, and a socially driven, user-innovator system with hardware, software, and social components inextricably linked.
In this http://cute-n-tiny.com/category/cute-animals/page/29/ viagra prescription health issue men usually suffer from loose erection during sexual intercourse. They promote in manufacturing digestive enzymes and alkalinity of the pancreatic juice and cialis brand bile is a core of the healing of chronic pancreatitis. Touch of online examination won’t harm you Assuming that you experience any of the proposed situations or discover that you are not primed for sex the same amount of money each month into a savings account when I receive my cialis online no prescription salary and I never withdraw from it. You can take the pharmaceutical in little measurements a few times amid the day (once in every 4-5 hours) however you shouldn’t surpass the greatest permitted dose of 100mg for every day. discount price on viagra
Along the way, I started working with Andrew Duerner, a robotics engineer in Goleta who is a true master of 3D design, printing, and assembly. He developed our breakthrough focusing helical unit, which takes nearly any lens and allows the user to focus it if, like view camera lenses originally made for bellows cameras, it lacks a built-in helical. For lenses that have a build in helical but lack an internal shutter (such as many medium format “system” lenses by Mamiya, Pentax, etc.), we have adapter kits that adapt the lens to a standard large format shutter (either the Ilex 4 or Copal 3), and then adapt that shutter to the camera, at the correct flange distance for that format.
The other members of the team include my dear friends Joe Babine (a veteran machist and master craftsman) and Alexandra Magearu, who has extensively tested, evaluated, and re-designed the camera’s ergonomics and aesthetics.
As I write this, we have one week left in our Kickstarter campaign. I do not yet know if the campaign will result in the project being funded or not. If it isn’t, we’ll reach out to users in other ways. If it is, we’ll be able to afford the tooling to create injection molds for the most common parts, which will bring the cost and manufacturing time down to the necessary level to make this system available to users on a significant scale, as well as optimizing the system itself so that each part is made in with the best method, imparting the optimal characteristics (surface finish, flatness, and strength for molded parts, flexibility and customizability for 3D printed parts).
Already, the Kickstarter campaign has been incredibly rewarding. I’ve received messages from photographers all over the world, with all sorts of wild use scenarios: adapting nineteenth century lenses for medium or large format, using their favorite lenses to shoot Instax, coupling non-Hasselblad lenses with Hasselblad backs, shooting high-end digital, etc. It has been incredibly rewarding to hear about all of the things folks want to (and will) do with the Mercury: this is what has made it truly open and universal.
The Kickstarter campaign can be viewed here. Your support is greatly appreciated!
Leave a Reply